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The critical behaviour of self-dual Z ( N )  spin systems: 
finite-size scaling and conformal invariance 

Francisco C Alcarazt 
Department of Mathematics, The Faculties, Australian National University, PO Box 4, 
Canberra, ACT 2601, Australia 

Received 1 September 1986 

Abstract. This paper is concerned with the critical properties of a family of self-dual 
two-dimensional Z ( N )  models whose bulk free energy is exactly known at the self-dual 
point. Our analysis is performed by studying the finite-size behaviour of the corresponding 
one-dimensional quantum Hamiltonians which also possess an exact solution at their 
self-dual point. By exploring finite-size scaling ideas and the conformal invariance of the 
critical infinite system we calculate, for N up to 8, the critical temperature and critical 
exponents as well as the central charge associated with the underlying conformal algebra. 
Our results strongly suggest that the recently constructed Z ( N I  quantum field theory of 
Zamolodchikov and Fateev is the underlying field theory associated with these statistical 
mechanical systems. We also test, for the Z(5) case, the conjecture that these models 
correspond to the bifurcation points in the phase diagram of the general Z( N )  spin model, 
where a massless phase originates. 

1. Introduction 

In the past few years two-dimensional Z( N )  spin systems have been intensively studied 
firstly because they are interesting non-trivial systems in their own right (Domany and 
Riedel 1979, Alcaraz and Koberle 1980, Cardy 1980) and secondly because they share 
many similar properties with four-dimensional Z( N )  gauge systems (Fradkin and 
Susskind 1978, Elitzur er a1 1979, Kogut 1979, Creutz et a1 1979, Alcaraz and Koberle 
1981). These spin models are self-dual and for N 3 5 they exhibit the massless phase 
precursor of the disordered low-temperature phase of the planar X Y  model. 

Fateev and Zamolodchikov (1982) by looking for possible solutions of the star- 
triangle relations for Z ( N )  models were able to find the free energy per particle for 
a family of self-dual points in the parameter space of the models on the square lattice. 
The questions that promptly arise are: are those points critical ones? If  they are critical 
what is the universality class governing their critical behaviour and what is the 
underlying quantum field theory describing their criticality? In this paper we study 
these questions by performing a finite-size analysis on these models. 

More recently Zamolodchikov and Fateev (1985) have constructed Z (  N)-invariant 
quantum field theories in (1 + 1) dimensions that are the natural candidates for the 
underlying field theories associated with the above statistical models. These theories 
are self-dual and conformally invariant with their conformal anomaly, or central charge 
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of their Vivasoro algebra, given by 
c = 2( N - I ) / (  N +2) .  

2d, = n( N - n ) / N (  N +2) 

(1.1) 

(1.2) 

They have ( N  - 1) fields (order parameters) with anomalous dimensions 
n = 1,2, . . . , N - 1 

and ( N  - 1) dual fields (disorder parameters) with the same dimensions as in (1.2) 
due to the self-dual behaviour of the theory. There are also Z( N )  neutral fields with 
dimension 

20 ,  = 2 n ( n + l ) / ( N + 2 )  n = 1,2, . . . , R (1.3) 
where R is the integer part of N/2. If these quantum field theories actually describe 
the above two-dimensional statistical models the relations (1.2) and (1.3) should give 
the Z( N )  charged (‘magnetic’) and neutral (‘thermal’) exponents of the statistical 
models. It is interesting to remark that the above dimensions (1.2) and (1.3) correspond 
exactly to the exponents of the antiferromagnetic critical points of the RSOS model 
(Andrews er a1 1984, Huse 1984). 

In this paper by using finite-size scaling (Barber 1983) and exploring the con- 
sequences, on a finite lattice, of the conformal symmetry of the infinite critical system 
(Cardy 1987) we will verify that the relations (1.1)-(1.3) hold for N <9. A short 
account of these results for N = 5 has already been presented (Alcaraz 1986). 

It has also been conjectured that the above exactly soluble points (Fateev and 
Zamolodchikov 1982) correspond, for N 3 5 ,  to the bifurcation points of a general 
self-dual Z ( N )  model (Alcaraz and Koberle 1980, 1981) where a soft phase appears. 
We also try to verify this conjecture for the case N = 5 .  

The layout of this paper is as follows. In 9 2  we introduce the general self-dual 
Z (  N )  model while in 93 we present the family of exactly soluble points of Fateev and 
Zamolodchikov (1982) as well as its corresponding quantum Hamiltonian. In 99 4 
and 5 in order to test the predictions (1.1)-(1.3) we calculate the critical temperature, 
critical exponents and conformal anomaly associated with these models. The conjecture 
that these exactly soluble points are the bifurcation points in the phase diagram of a 
general Z ( N )  self-dual model is analysed in 9 6. Lastly 9 7 consists of an overall 
summary and conclusion of the results presented in this paper. 

2. The general self-dual Z ( N )  model 

The spin models we are concerned with in this paper are defined in terms of Z ( N )  
spin variables 

i27r 
N 

S ( r )  = exp - n ( r )  (n( r )  = 0,1, .  . . , N - 1) 

located at the sites r = ( i , j )  of a square lattice. The most general self-dual Z( N )  spin 
model with only nearest-neighbour interactions, on the square lattice, is defined by 
the reduced Hamiltonian 

H = ~ [ H l ( n ( i , j ) - n ( i + l , j ) ) + H - l ( n ( i , j ) - n ( i , ~ + i ) ) ]  ( 2 . 2 ~ )  
ij 

where 

(2.26) 
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and as before 15 is the integer part of N I 2  and J Z ' ;  k = -1,1, m = 1,2 , .  . . , A are 
the coupling constants in the horizontal and vertical directions, respectively. The cases 
N = 2 and 3 correspond to the Ising and three-state Potts model while N = 4 corre- 
sponds to the symmetric Ashkin-Teller model (Ashkin and Teller 1943). There are N 
Boltzmann weights associated with each direction in the lattice 

xkk = exp( - ( n ) ) k = - l ,  1 n = 0 ,  1, .  . . , N-1.  (2.3) 

Only 2N of these are distinct due to the fact that 

Hk ( ) = Hk ( N - n) k = - l ,  1 n=0,1 ,  . . . ,  N - 1 .  (2.4) 

The family of models 

k = - l ,  1 n = l , 2 ,  ..., N - 1  (2.5) xkk) = X ( k )  

correspond to the N-state Potts models (Potts 1952) while 

k = - l ,  1 n = 1,2, . . . , N - 1 (2.6) 

correspond to the N-state clock model (JosC et a1 1977, Elitzur et a1 1979). Under the 
duality transformation the Boltzmann weights (2.3) are transformed to (Alcaraz and 
Koberle 1980, 1981, Cardy 1980) 

j',") = j ( U 8  
n. I 

The self-dual subspace, fixed under the duality transformation 

n k = - l ,  1 n = 0 , 1 ,  . . . ,  N - 1  (2.8) zkk) = X ( k )  

XZ 

n 

0 

t 

Figure 1. Schematic phase diagram of the general isotropic Z(5 )  model (see text). 
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is a line for N = 2,3,  a plane for N = 4, 5, etc, and coincides with the critical surface 
in the regions of the parameter space in which the transition is unique. 

The general features of the phase diagram of the Hamiltonian (2.2) are reasonably 
well understood (Alcaraz and Koberle 1980, 1981, Cardy 1980). For N 4 the transi- 
tions are all continuous and all phases are massive (finite correlation length). For 
N 5 5 first-order transitions are found (for example the Potts model) and a massless 
phase (infinite correlation length) appears in the phase diagram. In  order to illustrate 
this we show in figure 1 the phase diagram for the isotropic Z ( 5 )  model: X:" = X \ - ' )  = 
XI; X \ " = X : - " = X ,  (Alcaraz and Koberle 1980, 1981). The phases 1 and 2 are the 
paramagnetic and ferromagnetic phases while 3 represents the massless phases. The 
straight line AM is the self-dual line. The critical point of the five-state Potts model 
is P while E, ,  E? are the bifurcation points where the massless phases originate. The 
straight line A and the curve B are the thermodynamical paths of the five-state Potts 
model and five-state clock model, respectively. 

3. Fateev-Zamolodchikov solution and the associated quantum Hamiltonian 

Fateev and Zamolodchikov (1982), by restricting the general model (2.2) to the self-dual 
subspace, were able to solve the star-triangle relations and calculate the free energy 
per particle for a particular set of isolated points in the parameter space. Their solution 
corresponds to the Boltzmann weights 

xb"'= 1 X ; )  =fn  ( a  ) X:-I) = f n  (7r - a )  
k = - l ,  1 fl = 1, * . . , N - 1 ( 3 . 1 ~ )  

where 
n - I  - I  

k = O  
(3 . lb)  

and a is an arbitrary constant that fixes the anisotropy of the model (for the isotropic 
system a = .rr/2). For fixed N the weights (3.1) correspond to a point in the parameter 
space between the thermodynamical path of the N-Potts (2.5) and N-clock (2.6) 
models. On the other hand, for N 3 5 the phase diagram of the general model (2.2) 
also has a special point between these two thermodynamical paths, namely the bifurca- 
tion point where the massless phase originates, corresponding to the point El in figure 
1 (Alcaraz and Koberle 1980,1981). This suggests the conjecture (Fateev and Zamolod- 
chikov 1982) that the special family (3.1) corresponds to these bifurcation points in 
the phase diagram. In 9 6 we will test this conjecture for the N = 5 model. 

Recently by looking for Lax pair solutions associated with quantum Hamiltonians 
it has been shown (Alcaraz and Lima Santos 1986) that the family of one-dimensional 
quantum Z ( N )  models whose dynamics is governed by the Hamiltonian 

sc N - I  

H N  = - [ S " ( i ) S + " ( i +  l ) + R " ( i ) ] / s i n ( m / N )  (3.2) 

has an infinite number of local and non-local conservation laws. In (3.2) S ( i )  and 
R ( i )  are quantum operators satisfying the Z ( N )  algebra (Alcaraz and Koberle 1980, 
1981) 

[ S ( i ) ,  R ( j ) l =  [ S ( i ) ,  S(j) l  = [R( i ) ,  R ( j ) l  = O  i # j  ( 3 . 3 ~ )  

S ( i ) R ( i )  = e x p ( i 2 r / N ) R ( i ) S ( i )  R N ( i ) = S h ( i ) =  1. (3.3b) 

,= -x  n = l  
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Moreover the generator of the infinite set of charges corresponds to the diagonal-to- 
diagonal transfer matrix TD of the general classical model (2.2) at the exactly soluble 
point (3.1), the first conserved charge being the Hamiltonian (3.2), i.e. 

[T”, H N I = O *  (3.4) 

The above relation implies that we can, in an equivalent way, study the Hamiltonians 
(3.2) instead of the Euclidean model (2.2) at the couplings (3.1). From the computa- 
tional point of view this represents a great simplification because the Hamiltonian 
(3.2) is a sparse matrix while the transfer matrix associated with (3.1) is very dense. 
Fortunately the ground-state energy per particle of (3.2), for the infinite system, is also 
known exactly (Alcaraz and Lima Santos 1986) 

s i n h ( f r x )  s inh[irx(  N - l ) ]  N - l  1 
d x -  1 (3.5) cosh2(: TX) cosh(; TNX) s i n ( r n / N ) ‘  

In table 1 we present the numerical values for N 6 8. 

4. Critical temperature and exponents 

The purpose of this section is firstly to verify that the family of exactly soluble points 
(3.1) of the general model (2.2) are critical points and secondly to calculate their 
critical exponents. This will enable us to test if the Z (  N )  quantum field theory recently 
constructed by Zamolodchikov and Fateev (1985) corresponds to the underlying field 
theory of these statistical models. According to this field theory the ‘magnetic’ ( Z (  N )  
charged) and ‘thermal’ ( Z ( N )  neutral) critical indices are given by (1.2) and (1.3) 
respectively. 

Table 1. Exact ground-state energy per particle of Hamiltonian (3.2). 

N e0 

2 -1.273 239 5 4 4 . .  . 
3 -2.812 840 2 6 5 . .  , 
4 -4.546 479 089.  . . 
5 -6.431 029 721 . . . 
6 -8.438 520 787 . . . 
7 -10.549 521 7 7 6 . .  , 
8 -12 .749812427 . . .  

For N = 2 and N = 3 the relations (1.2) and (1.3) are easily verified because in this 
case the Z ( N )  model with Boltzmann weights given by (3.1) corresponds to the critical 
Ising and critical three-state Potts model respectively. For the Ising (three-state Potts) 
model the anomalous dimension corresponding to the energy operator is X ,  = 1 ( X ,  = g )  
and to the magnetic operator is X ,  = $ ( X ,  = A) which fully agree with the predictions 
(1.2)-(1.3) (den Nijs 1979, Belavin et a1 1984a, b) .  

Hereafter we will exploit the relation (3.4) to simplify our numerical calculations. 
Instead of studying the Euclidean version of the models given by (2.2) and (3.1) we 
concentrate on its Hamiltonian version given by (3.2). In order to test whether the 
Hamiltonians (3.2) are critical we should extend them by introducing a coupling A to 
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play the role of temperature 
cc N - l  

HN(A)=- 1 [[AR"(i)+S"(i)S+"(i+l)]/sin(.rm/N)]. (4.1) 

This Hamiltonian is self-dual HN(A) = A H N  ( l / A )  and at its self-dual point ( A  = 1 )  it 
reduces to (3.2). It can also be obtained in an appropriate time continuum limit (a + 0) 
(Fradkin and Susskind 1978) of (2.2) around the point (3.1). 

The Z(4)  case can be better analysed by writing the operators S ( i ) ,  R ( i )  in (3.3) 
in terms of two Pauli matrices az( i ) ,  a"(i); Tz(i), T x ( i )  located at each lattice point 

S (  i )  = ( ~ / d Z ) ( e ~ ~ ' ~ ~ ~  ( i )  o U + e-i r r ' 4 ~ ~  T' ( i)) S 2 ( i ) = a z ( i ) O ~ 2 ( i )  (4.2a) 

R( i) + R + (  i )  = ax( i)OU+UO T"(  i )  R 2 ( i ) = a " ( i ) O T X ( i ) .  (4.2b) 

In terms of these Pauli matrices the Hamiltonian (4.1) for N = 4 is given by 

H4 = -E (A[dZ(a"(i)+ ~ ~ ( i ) ) +  ax(  i ) ~ " ( i ) ]  
I 

+[dZ(c+z(i)C7z(i+ I ) +  TZ(i)TL(i+ 1)) 

+aZ(i)aZ(i)aL(i+ l )Ti ( i )Tz( i+  I)]}. (4.3) 
This Hamiltonian corresponds to a particular case p = d 2 / 2  (see Kohmoto et a1 1981, 
Alcaraz and Drugowich de Felicio 1984) of the quantum Ashkin-Teller model. This 
model is critical at A = 1 with the exponents 

,=a Ym =% and y =; 

for the correlation length, magnetisation and polarisation, respectively. These 
exponents give the dimension X ,  = d - 1 /  v = 3 for the energy operator while for the 
magnetic and polarisation operators they give the dimensions X ,  = ( d  - ym/ v) /2  = Q 
and X ,  = ( d  - y,/ v ) / 2  = d respectively, which completely agree with the predictions 
(1.2) and (1.3). It is interesting to observe that the second Z(4)  neutral operator whose 
dimension is predicted by (1.3) is marginal ( X E t  = 2) and probably corresponds to the 
well known marginal operator (four-spin coupling) of the eight-vertex and Ashkin- 
Teller (Kadanoff and Wegner 1971, Kadanoff and Brown 1979) models. 

For N > 4 all our results will be obtained by studying the behaviour of finite lattices 
of size L as L goes to infinity. 

4.1. Finite-size scaling ( F S S )  

The Hamiltonians (4.1) for a finite lattice of size L and periodic boundary conditions 
commutes with the Z( N) charge operator 

L 

exp("Q) N = , = 1  fl R ( i ) .  (4.4) 

In the basis where the R (  i) operators are diagonal the Hilbert space is then separated 
into N disjoint sectors labelled by the eigenvalues of Q ( q  = 0, 1 ,  . . . , N - 1). The 
ground state is in the Q = O  sector while the sectors with Q =  q and Q =  
N - q ( q  = 1 , 2 ,  . . . , N - 1 )  are degenerate. These sectors can be further block 
diagonalised according to the eigenvalues of the translation operator (linear momen- 
tum). From the lowest eigenenergies Eb"'(A, L) of the sector q ( 1 , 2 , .  . . , N - 1 )  we can 
define N - 1 mass gaps 

q = 1 , 2  , . . . ,  N-1. (4.5) /,?I E ( " )  o ( A ,  L) - Ebo'(A, L) 
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Due to the degeneracy of the Hilbert space only the first N of these are distinct. All 
eigenvalue calculations throughout this paper were performed by using the Lanczos 
method (Hamer and Barber 1981a, Roomany er a1 1980) starting with an appropriate 
state for each disjoint sector of the Hilbert space. 

According to finite-size scaling theory ( FSS) (Barber 1983) the critical temperature 
A, may be estimated by the extrapolation to the bulk limit (L+ CO) of the sequences 
AF’(L) ,  q = 1 , 2 , .  . . , N obtained by solving the equations 

L A : ~ ) ( A ~ ) ) / ( L -  I ) A ~ ? , ( A : ~ ] )  = 1 q = 1 , 2  ) . . . )  N. (4.6) 
In table 2 we exhibit these sequences for N = 5  (L=3-8),  N =6(L=3-7),  N = 7  
(L=3-6) and N = 8  (L=3-6).  These tables are shorter for N = 7 , 8  because as N 
grows the dimension of the Hilbert space grows proportional to N L  increasing the 
computational difficulty in diagonalising (4.1) for larger lattices. 

Due to the self-duality of the Hamiltonian (4.1) three distinct possible critical 
behaviours may occur: (i)  a single isolated first-order phase transition at A = A, = 1, 
(ii) a single isolated continuous phase transition at A = A , =  1 and (iii) two phase 
transitions with an intermediate massless phase (critical). While the last two 
possibilities imply that the Hamilton (3.2) is critical the first one implies it to be 
non-critical (finite mass gap). In the cases (i)  and (ii) all the sequences for q = 1, . . . , fi 
in table 2 should converge to A = 1 while in the last case the different sequences may 
converge to distinct points. Extrapolating the sequences of table 2 by using VBS 

approximants (Vanden Broeck and Schwartz 1979, Hamer and Barber 1981b) we 
obtain for N = 5 

A Y )  = 1.0000 (0) A :‘*I = 1 .OOOO (2) 

Table 2. Sequences of estimators for the critical temperature of the Hamiltonians (4.1). 
A?’( L )  are obtained using sectors 0 and q. 

5 3 
4 
5 
6 
7 
8 

6 3 
4 
5 
6 
7 

7 3 
4 
5 
6 

8 3 
4 
5 
6 

1.057 016 89 
1.02 1 479 45 
1.011 018 65 
1.006 643 96 
1.004 425 50 
1.003 153 07 

1.059 592 21 
1.022 670 02 
1.011 72006 
1.007 107 49 
1.004754 15 

1.061 248 46 
1.023 371 58 
1.012 11206 
1.007 356 55 

1.062 297 04 
1.023 764 98 
1.012 314 52 
1.007 476 83 

1.037 053 42 
1.011 86043 
1.005 302 47 
1.002 847 23 
1.001 71840 
1.001 125 07 

1.039617 00 
1.013 245 08 
1.006 186 56 
1.003 462 32 
1.002 171 19 

1.042 194 15 
1.014 564 02 
1.007 001 85 
1.004017 33 

1.044 394 24 
1.015 649 24 
1.007 658 12 
1.004 457 28 

1.033 997 63 
1.010 474 50 
1.004 521 93 
1.002 349 72 
1.001 374 79 

1.034413 19 
1.010 774 34 
1.004 741 92 
1.002 514 88 

1.035 822 74 1.033 178 70 
1.011 531 19 1.01023365 
1.005 222 27 1.004446 25 
1.002 847 06 1.002 330 55 
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for N = 6  
A‘,“= l.OOOOO(7) AL2) = 1.0000 (3) A ( 3 )  = l.OOOO(l) 

for N = 7  
A:”= 1.00 (4) A:2’ = 1.00 (2) = 1.00 (1) 

and for N = 8 

A:’) = 1.00 (4) A Y )  = 1.00 (2) 
where the errors are estimated to be in the last digit. 

All these results strongly suggest that there is a single phase transition occurring 
at  A = 1 .  Although the nature of the phase transition cannot be determined from these 
results our subsequent analysis indicates the transition as being continuous. 

The thermal exponents v and (Y may be calculated using, respectively, the Callan- 
Symanzik p functions (Hamer et a1 1979) 

A‘3)  = 1.00 (1) A Y ’  = 1.00 (1) 

pY’(A) = - h y ’ ( A ) / [ h l ( A )  -2A dAy’ /aA]  q = 1 , 2  ) . . . (  IQ (4.7) 

and  the analogue of the specific heat per site 
c,( A )  = - (A  ’/ ~ ) a ~ ~ b O ) / a , i ~ .  (4.8) 

In table 3 we show, at A = 1, the values of these functions together with the mass gaps 

Table 3. Finite-size results. Listed are the values at A = A c  = 1 of the mass gap . iy”(q  = 1 ,2 ) ,  
the p functions p y ’ ( q  = 1 , 2 )  and the specific heat C,(A). 

~ ( 7 )  2 
3 
4 
5 
6 
7 

2.222 415 179 
1.378 801 132 
1.001 817 610 
0.787 041 336 
0.648 098 8 18 
0.550 802 563 
0.478 856 835 

2.593 313 811 
1.588 128 837 
1.145 761 053 
0.895 958 630 
0.735 322 404 
0.623 329 524 

2.943 808 723 
1.782 168 270 
1.277 657 066 
0.994 949 554 
0.814 102 739 
0.688 506 257 

3.279 127 855 
1.965 022 528 
1.400841 721 
1.086 823 857 
0.886 869 244 
0.748 474 941 

2.951 764 728 
1.881 879 374 
1.388 298 182 
1.101 593 945 
0.913 634271 
0.780 710 922 
0.681 666 394 

3.571 653 839 
2.257 399 520 
1.657 740 863 
1.311 569479 
1.085 547 865 
0.926 176 842 

4.138 808 300 
2.592 493 295 
1.894 649 350 
1.494 323 454 
1.234 041 937 
1.05 1 077 050 

4.669 799 466 
2.899 932 628 
2.109 386 229 
1.658 580 667 
1.366 657 761 
1.162 057 342 

0.302 927 480 
0.166 548 927 
0.110 328 601 
0.080414 545 
0.062 166 443 
0.050 027 540 
0.041 451 272 

0.284 396 033 
0.151 696 014 
0.098 457 525 
0.070 656 683 
0.053 941 307 
0.042 952 641 

0.269 746 193 
0.140 341 537 
0.089 586 002 
0.063 488 434 
0.047 981 807 
0.037 885 337 

0.257 793 106 
0.131 330422 
0.082 675 147 
0.057 982 107 
0.043 455 130 
0.034 072 258 

0.316 275 389 
0.176 238 947 
0.117 553 553 
0.086 050 594 
0.066 724 026 
0.053 816 064 
0.044 668 541 

0.299 370 132 
0.162 365 585 
0.106311 150 
0.076 721 942 
0.058 805 309 
0.046 967 063 

0.285 383 692 
0.151 293 105 
0.097 554 432 
0.069 588 196 
0.052 838 346 
0.041 869 175 

0.273 626 975 
0.142 246 634 
0.090 535 963 
0.063 952 680 
0.048 178 956 
0.037 926 759 

1.727 546 4 
2.817 1660 
3.766 043 8 
4.624 741 9 
5.472 479 8 
6.268 044 0 
7.037 061 3 

4.163 262 575 
6.973 865 635 
9.526 934 655 

11.960 015 675 
14.320 419 736 
16.630 874 396 

5.528 142 419 
9.466 494 771 

13.163 870 296 
16.773 466 174 
20.343 151 409 
23.893 769 082 

7.018 675 684 
12.244 308 128 
17.282 908 308 
22.298 497 521 
27.335 907 312 
32.411 371 974 
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(4.6). Although we have calculated these functions for q = 1 ,2 , .  . . , N we present, for 
brevity, only the q = 1 ,2  results. From FSS theory we expect (Barber 1983) that as L+ CO 

p ~ q ’ ( A c )  - L”” and CL(Ac) - L“”’. (4.9) 

Extrapolating the sequences (4.7) and (4.8) by using the alternate E algorithm (Hamer 
and  Barber 1981b) we obtain the values 

N = 5  l / v =  1.415*0.005 a /  v = 0.82 * 0.02 

N = 6  l/v=1.49*0.02 a /  v = 0.94 * 0.02 

N = 7  l/v=1.54*0.02 a / v =  1.04*0.02 

N = 8  1/ v = 1.59 * 0.02 a / v =  1.10*0.05 

which gives us the following values for the anomalous dimension X ,  = 2 - 1/ v of the 
energy operator: 

N = 5  X ,  = 0.585 * 0.05 N = 6  X ,  = 0.5 1 * 0.02 

N = 7  X ,  = 0.46 f 0.02 N = 8  X ,  = 0.41 * 0.02. 

We thus verify that the values of X ,  agree reasonably well with the predicted values 
given by (1.3). The estimates of a /  v are however slightly lower for N > 5 than the 
predicted values 2( 1 - X ? ) ,  which we attribute to the small number of terms in the 
extrapolating sequence and  the fact that normally the convergence of the specific heat 
VBS approximants are relatively slow (Hamer and  Barber 1981b, Alcaraz and  Drugowich 
de  Felicio 1984). 

4.2. Conformal invariance and mass gap amplitudes 

Most of the statistical mechanical systems at criticality (Cardy 1987) are believed to 
satisfy the basic assumptions-short-range interactions, scale invariance, rotational 
and translation invariance-that ensure conformal invariance (Polyakov 1970). In  two 
dimensions this symmetry has many important implications (see Cardy (1987) for a 
recent review). Specifically, Cardy (1984, 1966) has derived a set of remarkable 
relations between the eigenvalue spectrum of the transfer matrix in a strip of finite-size 
width and  the anomalous dimension of the operators describing the critical behaviour 
of the infinite system. The results for the quantum Hamiltonian formalism, which we 
are interested in, can be transcribed as follows. To each primary operator cp with 
anomalous dimension X ,  and spin s, in the operator algebra of the infinite system 
there exists an  infinite set of states in the quantum Hamiltonian, in a periodic chain 
of L sites, whose energy and momentum as L -+ CO, at A = A,,  is given by 

E,, , .  = Eho’ + (2 r/ L )  l( X ,  + n + n ‘) + o( L - l )  n, n’=O, 1 ,2 , .  . . ( 4 . 1 0 ~ )  

P,,,, = ( 2 r / L ) ( s ,  + n - n’) (4. l o b )  

respectively. The constant 5 does not appear in the transfer matrix formalism but 
enters in the Hamiltonian relations since the Hamiltonian may in principle be multiplied 
by an  arbitrary constant without modifying its critical properties (see for example 
Alcaraz and Drugowich de  Felicio 1984, von Gehlen er a1 1986, Alcaraz and Barber 
1987a, b).  

n, n’=O, 1 , 2 , . .  . 
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Before we proceed further in the application of the above relations let us introduce 
the following notation for the eigenenergies of our Hamiltonian (4.1) at the critical 
temperature A = A, = 1. We denote by E : ’ ( k )  the energy corresponding to the n-excited 
state in the sector with charge Q = q and momentum k. The Z (  N )  neutral operators 
are related to states in the q = O  sector, while the order and disorder operators are 
related to the states in the charged sectors (q  = 1,2, ,  . . , N - 1). The first neutral 
operator is the energy operator whose anomalous dimension X ,  may be estimated 
through 

GY’(l)= E ~ ’ ( O ) - E ~ ’ ( O ) = ~ X ,  +o(L- ’ )  (4.11) 
L 

while the anomalous dimension X, ,  for the second neutral operator through 

2 g5 
L 

G‘f’(2) = Ei0’(O) - EP’(0) =- X, ,  +o( L - ’ ) .  (4.12) 

The other neutral operators for 5 < N < 9 have dimensions higher than two and 
are thus irrelevant. The estimation of their dimensions is rather difficult because, apart 
from being related to higher states in the spectrum, these states may also be confused 

Table 4. Ratio of mass gap amplitudes. See equations (4.11)-(4.14). 

1.1726680 
0.881 0805 
0.787 1071 
0.740 9454 
0.713 3835 
0.694 9456 
0.68 1 6602 
0.671 5755 

1.124 7660 
0.833 2422 
0.737 9070 
0.690 5021 
0.661 8907 
0.642 5662 
0.628 5230 

1.086 0285 
0.795 3422 
0.699 3171 
0.651 1801 
0.621 9196 
0.602 0329 

1 .OS3 9003 
0.764 3879 
0.668 0525 
0.619 4857 
0.589 8187 
0.569 5690 

1.901 6161 
1.714 6664 
1.695 1805 
1.699 4783 
1.707 3789 
1.714 8301 
1.721 0695 
1.726 1138 

1.836 3205 
1.642 4296 
1.611 5143 
1.605 5527 
1.604 7652 
1.604 9020 
1.604 9444 

1.783 8622 
1.584 2493 
1.544 2046 
1.530 2263 
1.522 7827 
1.5174109 

0.209 7130 
0.152 8418 
0.137 0488 
0.130 1189 
0.126 3577 
0.1240421 
0.122 4911 
0.121 3876 

0.200 3420 
0.144 8520 
0.129 2374 
0.122 2850 
0.1 18 4528 
0.116 0560 
0.144 4255 

0.191 9833 
0.137 8136 
0.122 3982 
0.115 4505 
0.111 5723 
0.109 1161 

0.1846683 
0.131 7068 
0.1164919 
0.109 5655 
0.105 6595 
0.103 1608 

0.278 5364 
0.208 6086 
0.189 9194 
0.182 1228 
0.178 1283 
0.175 8181 
0.174 3697 
0.173 4077 

0.275 9219 
0.205 8957 
0.186 9868 
0.179 0097 
0.174 8705 
0.172 4424 
0.170 8961 

0.269 9163 
0.200 4753 
0.181 5053 
0.173 3961 
0.169 1247 
0.166 5772 

0.262 9858 
0.194 3697 
0.175 4134 
0.167 2057 
0.162 8203 
0.160 1641 

0.297 8765 
0.224 1560 
0.204 5476 
0.196 4465 
0.192 3488 
0.190 0154 
0.188 5791 

0.302 8397 
0.227 8793 
0.207 8607 
0.199 5664 
0.195 3591 
0.192 9562 

0.301 8189 0.313 8423 
0.226 6437 0.236 7820 
0.206 4131 0.216 2312 
0.197 9611 0.207 7550 
0.193 6322 0.203 4830 
0.191 1321 0.201 0630 
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Table 5. Estimated values for the anomalous dimension of the neutral (X, and XeE) and 
the Z( N )  charged operators (X',", 9 = 1,2 , .  . . , N - 1). The conjectured values are given 
by (1.2) and (1.3). 

N = 5  N = 6  N = 7  N = 8  

Extrapolated 
x, Conjectured 

Extrapolated 
Conjectured x,, 

X:' Extrapolated 
Conjectured 

x'2' Extrapolated 
m Conjectured 

Extrapolated 
Conjectured 
Extrapolated 
Conjectured 

X ; )  

X :) 

0.572 f 0.002 

1.73 * 0.02 
0.571 4 2 . .  . 

1.714 2 8 . .  . 
0.1143 *0.001 
0.114 285. . . 
0.1 7 1 2 * 0.000 1 
0.171 428 . .  . 
0.17 12 f 0.000 1 
0.171 428 . .  . 
0.1 143 * 0.000 1 
0.1 14 285 . . . 

0.503 f 0.004 
0.50 
1.55i0.05 
1.50 
0.1042 * 0.0002 
0.104 1 6 6 . .  . 
0.1662*0.0005 
0.166 6 6 .  . . 
0.1863 * 0.0005 
0.187 5 
0.1662*0.0005 
0.166 6 6 . .  . 

~ ~ 

0.45 10.01 0.41 1 0.02 
0.444 4 . . . 0.40 

1.333 3 . .  . 1.20 
0.097 f 0.001 
0.095 2 3 . .  . 0.087 5 
0.158 * 0.001 0.151 f 0.001 
0.158 7 3 . .  . 0.150 
0.188k0.002 0.186*0.002 
0.190476.. . 0.187 5 
0.188 * 0.002 0.198 * 0.002 
0.190 476. . . 0.20 

- - 

0.090 * 0,001 

with the higher states ( n  = n'= 1 in (4.10)) related to the energy operator. The charged 
4 operators, with dimension X z ' ( q  = 1,2, .  . . , N - l ) ,  are those governing the long 
distance correlations 

(sq(i)s+q(i+ n))- ln~"~';! ' '  q = 1 , 2  ) . . . )  N - 1 .  
n-cs 

Their dimensions can be estimated by the relations 

q = 1 , 2  , . . . ,  N - 1 .  (4.13) G P ) ( l ) =  E ~ ~ ' ( ~ ) - E ~ O ' ( O ) = - X ~ ' + O ( L - ' )  2 ..5 
L 

The degeneracy, already mentioned, of the disjoint sectors of the Hilbert space 
with charge q and N - 4  implies that X2'=X"-y' ,,, , q = 1 , .  . . , N - 1 ,  in perfect 
agreement with the prediction (1.2). The constant 4' appearing in the preceding 
equations can be extracted from the difference in energy of two successive states related 
to the same primary operator, for example using the charge q = 1 operator we have 

ZL= Eb"(?) - E ~ " ( O ) = - + o ( L - ' ) .  2 ..5 
L (4.14) 

In table 4 we present our estimators (4.11)-(4.14) for N = 5-8, respectively. The 
extrapolation of these sequences, using the alternate E algorithm (Hamer and Barber 
1981b) gives the values shown in table 5 .  For the sake of comparison we have also 
presented in this table the conjectured values given by (1.2) and (1.3). As we can see 
the agreement is good for all N,  which strongly supports the conjecture that the Z( N )  
quantum field theories constructed by Zamolodchikov and Fateev (1985) are the 
underlying field theories of these critical statistical systems (3 .2) .  

5. Conformal anomaly 

In this section we estimate the conformal anomaly or central charge of the Virasoro 
algebra governing the critical behaviour of the Hamiltonian (3.2) and the models given 
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by (2.2) and (3.1). For N = 2  and 3 these models reduce to the critical king and 
three-state Potts models whose conformal class has a central charge c = f and c = 
respectively (Belavin er a1 1984a, b) in perfect agreement with the prediction ( 1 . 1 ) .  
For N = 4 the model reduces to a special point (see also 0 4) of the critical Ashkin-Teller 
model, being governed by the same conformal class, with central charge c = 1 (von 
Gehlen and Rittenberg 1987), that governs the eight-vertex and X X Z  models (Blote 
et a1 1986). In the rest of this section we will extract numerically the values of c for 
5s N c 9 .  

The assumption of conformal invariance, at criticality, of the infinite ( 1  + 1 )  statis- 
tical systems has other implications, beyond (4.10), for the finite system. The ground- 
state energy for a finite Hamiltonian of size L and periodic boundary conditions, at 
the critical point, should behave as (Blote er a1 1986, Affleck 1986) 

E ~ ’ ( o ) / L  = e , -dr rc l /L2+o(L-2 )  L+cO (5 .1 )  

where c, as before, is the conformal anomaly of the conformal class governing the 
criticality of the infinite system, e, is the bulk limit of the ground-state energy per 
particle and l is the same constant that appears in (4.11)-(4.13). The values of e, for 
the Hamiltonians (3.2) are given exactly by (3 .5)  and these values are shown in table 
1 for N < 9 .  From (5 .1 )  and (4.14) a possible way to extract c is by extrapolating the 
sequence 

cL = -12(~hO’(0) - L e o ) / Z L .  (5.2) 

In table 6 we exhibit these sequences for N = 5-8 respectively. We also show in 
these tables their extrapolated values. As we can see they are in reasonable agreement 
with the predictions ( 1 . 1 ) .  One of the major error sources in these estimates concerns 
the evaluation of the constant 5. From the Ising exact solution 5 = 2 for N = 2 and 
earlier finite-size calculations suggest 5 = 3 for N = 3 (von Gehlen er a1 1986) and 5 = 4 
for N = 4 (Alcaraz and Drugowich de Felicio 1984). This indicates the conjecture of 
5 = N for all the Hamiltonians (3.2) (Alcaraz 1986). This constant may be estimated 
by using the following sequence 

5L(N)= (LZL)/277 (5.3)  

where Z L  is given by (4.14). In table 7 we present these sequences for N = 5-8. We 
see from this table that I L (  N )  exceeds the conjectured value for N > 5. However the 
extrapolations of the above sequence either using VBS approximants or three-point fits 
(Alcaraz and Barber 1987a) are not conclusive, which may be explained if the sequence 

Table 7. Finite-size sequence iL( N )  for N = 5-9 (see equation (5.3)). 

2 0.674652 0.686 724 0.697 266 0.706 523 
3 0.861 452 0.872 472 0.882 064 0.890 453 
4 0.930729 0.940 664 0.949 339 0.956 937 
5 0.962670 0.971 748 0.973 710 0.986 701 
6 0.979582 0.987 990 0.995 397 1.001 919 
7 0.989407 0.997 279 1.004 244 1.010394 
8 0.995500 1.002 934 
9 0.999461 
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(5.3) did not reach its asymptotic regime. Our main argument in  favour of the conjecture 
5 = N concerns the last columns of table 6 where this value was used to extract c. As 
we clearly see the rate of convergence of these sequences is increased and the agreement 
with the conjectured values (1.1) is excellent. 

6. General Z(5) model-the bifurcation point 

In this section we wish to test the conjecture mentioned in 0 1, namely that for N 2 5 
the Boltzmann weights given by (3.1) correspond to the bifurcation point in the phase 
diagram of the general model (2.2) where a massless phase occurs (see points El  and 
E2 in figure 1). Our analysis will be restricted to the Z(5) model. 

Instead of working with the general Z(5)  Euclidean model given by (2.2) we work 
here with its quantum Hamiltonian analogue described by 

- H , = x  {(S(i)S'(i)+HC)fn((s(i)s'(i))2+HC) 
I 

+ A[C, (R( i )  + R+( i ) )+R(R*( i )  + R + ' ( i ) ) ] }  (6.1) 

where as before A plays the role of the temperature and R is an additional coupling 
constant. This Hamiltonian as well as (2.2) is self-dual. The self-dual line is given by 
A = 1 (VR). It is interesting to remark upon three special cases of this general 
Hamiltonian: (i)  a= 1: it reduces to the five-state quantum Potts model which has a 
unique first-order phase transition at A = 1 (Hamer 1981), (ii) R = 0: it reduces to the 
Z(5) quantum clock model which is believed as already having an intermediate massless 
phase separating two infinite-order phase transitions (Hamer and Barber 1981b, Alcaraz 
and Koberle 1980, 1981) and (ii i)  R = Ro = sin(.rr/5)/sin(2.rr/5) 56.18: it gives the 
Hamiltonian (4.1), the critical point of which is conjectured (Fateev and Zamolodchikov 
1982) as being the bifurcation point in the phase diagram of (6.1). 

We estimate the critical temperature of (6.1) for several values of R by using the 
sequences A P ' ( L ) ,  q = 1,2; L=3-8 obtained by solving (4.6) (see also 0 4.1). In table 
8 we present some of these sequences with their VBS extrapolated values. The results 
shown in this table together with those for R = Ro given in table 2 indicate that the 
bifurcation point "i very close to R,,. This is clearly consistent with the conjecture 
that for N 3 5  the quantum Hamiltonian (3.2) and the Euclidean model at (3.1) 
correspond to the bifurcation point of the general Z (  N )  model. 

Table 8. Sequences of estimators for the critical temperature of the Hamiltonian (6.1). 
A:"'(  L )  are obtained by using sectors 0 and 9. 

fl = 0.50 fl = 0.55 

L A:"(L)  

3 
4 
5 
6 
7 
8 
Extrapolated 

1.059 813 
1.022 420 
1.011 437 
1.006 868 
1.004 565 
1.003 253 
1 .OOOO (8) 

A:* ) (  L )  

1.029 422 
1.006 509 
1.001 130 
0.999 416 
0.998 801 
0.998 584 
0.9984 (3) 

A : ' ) ( L )  

1.058 546 
1.021 967 
1.011 212 
1.006 729 
1.004 465 
1.003 171 
1.0000 (3) 

,+L2]( L) 

1.033 003 
1.009 089 
1.003 178 
1.001 123 
1.000 268 
0.999 874 
0.9994 (2) 

fl= 0.58 

A Y ' ( L )  A',z'(L) 

1.057 850 1.034 895 
1.021 738 1.010405 
1.011 115 1.004198 
1.006 681 1.001 958 
1.004 437 1,000975 
1.003 153 1,000487 
1 .OOOO (2) 0.9999 (3) 
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7. Summary and conclusions 

Our aim in this paper was to study the critical behaviour of a family of self-dual Z( N )  
models which are exactly soluble at a particular point (Fateev and Zamolodchikov 
1982). These points correspond, in the parameter space of the general self-dual Z (  N )  
model (2.2), to the points where the Boltzmann weights are given by (3.1). Two 
conjectures exist regarding this family of exactly solved points. The first of these asserts 
that they are critical points having their critical behaviour governed by a recently 
constructed Z( N )  invariant quantum field theory (Zamolodchikov and Fateev 1985). 
In this case the critical indices as well as the conformal anomaly corresponding to 
these points are predicted by (1.1)-(1.3). The second conjecture states that this family 
of points for N 2 5 correspond to the bifurcation points in the parameter space of 
(2.2) where a massless phase occurs (points E, and E2 in figure 1 for N 3 5). 

Instead of working directly with the Euclidean models (2.3) and (3.1) we study the 
family of quantum Hamiltonians (3.2). These Hamiltonians commute with the 
diagonal-to-diagonal transfer matrices associated with these exactly soluble points. 
Their ground-state energy, in the bulk limit, is also known exactly (Alcaraz and Lima 
Santos 1986). Our analysis, which can be divided into two parts, was performed by 
mainly studying the finite-size behaviour of the Hamiltonians ( N  < 9) with periodic 
boundary conditions applied. We firstly calculated the critical temperature and the 
thermal exponents U and a (see 04.1) by using standard FSS theory (Barber 1983). 
Secondly we exploited recent predictions of conformal invariance (Cardy 1987) con- 
cerning the eigenvalue spectrum of statistical systems on a strip of finite width (see 
99 4.2 and 5.4). We were able to obtain the anomalous dimensions of the energy 
operators ( Z (  N )  neutral) as well as the dimensions of all the Z( N )  charged (order 
and disorder) operators. We also estimate the conformal anomaly c corresponding to 
the conformal theory which governs these statistical models. All our results in §§ 4 
and 5 strongly support the conjecture that the family of models (3.2) (or (2.2) and 
(3.1)) are critical, having their behaviour ruled by the Z ( N )  quantum field theory of 
Zamolodchikov and Fateev (1985). 

Finally concerning the possibility of these statistical systems being related to the 
bifurcation points, mentioned earlier, our results (see § 6) for N = 5, although not fully 
guaranteeing the validity of this conjecture, are clearly consistent with it. 
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